

## Program Assessment Plan

| Program:                    | MA in Chemical Biology     |
|-----------------------------|----------------------------|
| Department:                 | Chemistry                  |
| College/School:             | College of Arts & Sciences |
| Date:                       | August 2021                |
| Primary Assessment Contact: | Marvin Meyers              |

## *Note: Each cell in the table below will expand as needed to accommodate your responses.*

| # | <ul> <li>Program Learning Outcomes</li> <li>What do the program faculty expect all students to know, or be able to do, as a result of completing this program?</li> <li>Note: These should be measurable, and manageable in number (typically 4-6 are sufficient).</li> </ul> | Assessment Mapping<br>From what specific courses (or other<br>educational/professional experiences)<br>will artifacts of student learning be<br>analyzed to demonstrate achievement<br>of the outcome? Include courses<br>taught at the Madrid campus and/or<br>online as applicable. | <ul> <li>Assessment Methods</li> <li>What specific artifacts of student<br/>learning will be analyzed? How, and by<br/>whom, will they be analyzed?</li> <li>Note: the majority should provide<br/>direct, rather than indirect, evidence<br/>of achievement.</li> <li>Please note if a rubric is used and, if so,<br/>include it as an appendix to this plan.</li> </ul> | Use of Assessment Data<br>How and when will analyzed data be<br>used by faculty to make changes in<br>pedagogy, curriculum design, and/or<br>assessment work?<br>How and when will the program<br>evaluate the impact of assessment-<br>informed changes made in previous<br>years? |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Assess relevant literature in chemical biology                                                                                                                                                                                                                                | CHEM-5630 (Chemical Biology)<br>CHEM-5470 (Med Chem)                                                                                                                                                                                                                                  | Course-specific rubrics will be used to<br>collect student learning data from<br>student literature papers presented<br>and/or written for CHEM-5630 and<br>CHEM-5470. The rubric will be<br>completed by the course instructors as<br>they grade the papers.<br>The data will be analyzed by the<br>Chemical Biology Program Coordinator<br>and a small team of faculty. | Assessment data will be collected on a<br>3-year rotating basis. A summary of<br>the results will be shared with the<br>faculty annually and adjustments to the<br>curriculum and/or assessment process<br>will be made as needed.                                                  |
| 2 | Apply chemistry principles to biology                                                                                                                                                                                                                                         | CHEM-5630 (Chemical Biology)<br>CHEM-5470 (Med Chem)                                                                                                                                                                                                                                  | The final exam in CHEB-5630<br>(cumulative) and average of exam<br>scores in CHEM-5470 will be used to<br>gauge student mastery of this learning<br>outcome.                                                                                                                                                                                                              | Assessment data will be collected on a<br>3-year rotating basis. A summary of<br>the results will be shared with the<br>faculty annually and adjustments to the<br>curriculum and/or assessment process                                                                             |

| 5 |                                                                     |                     |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                     |
|---|---------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | Evidence scholarly and professional integrity in chemical biology   | MA Oral Examination | A rubric will be developed and used to<br>collect student learning data from the<br>MA oral examination. The rubric will be<br>completed by the examination<br>committee.<br>The data will be analyzed by the<br>Chemical Biology Program Coordinator<br>and a small team of faculty. | Assessment data will be collected on a 3-year rotating basis. A summary of the results will be shared with the faculty annually and adjustments to the curriculum and/or assessment process will be made as needed. |
| 3 | Articulate arguments or explanations in both oral and written forms | MA Oral Examination | Rubrics are used to collect student<br>learning data from the MA oral<br>examination. The rubric will be<br>completed by the examination<br>committee.<br>The data will be analyzed by the<br>Chemical Biology Program Coordinator<br>and a small team of faculty.                    | Assessment data will be collected on a 3-year rotating basis. A summary of the results will be shared with the faculty annually and adjustments to the curriculum and/or assessment process will be made as needed. |
|   |                                                                     |                     | The data will be analyzed by the<br>Chemical Biology Program Coordinator                                                                                                                                                                                                              | will be made as needed.                                                                                                                                                                                             |

## **Additional Questions**

1. On what schedule/cycle will faculty assess each of the above-noted program learning outcomes? (It is <u>not recommended</u> to try to assess every outcome every year.)

Year 1: Learning outcomes 1 and 2 Year 2: Learning outcomes 3 and 4

2. Describe how, and the extent to which, program faculty contributed to the development of this plan.

The plan was originally approved when the Chemical Biology Masters program was developed. Substantial changes will be approved by the faculty (no substantial changes have been made to date).

3. On what schedule/cycle will faculty review and, if needed, modify this assessment plan?

Every 3 years.

IMPORTANT: Please remember to submit any assessment rubrics (as noted above) along with this report.

|            | Standards                   | 5 - 4<br>Exemplary                                                                                                                                                                                                                         | 3 - 2<br>Satisfactory                                                                                                                                                                                                     | 1 - 0<br>Weak                                                                                                                                                                    | Score | Weight            | Total<br>Score |
|------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|----------------|
|            | Introduction                | Provides background research into the<br>topic and summarizes important findings<br>from the review of the literature; describes<br>problem to be solved; explains the<br>significance of the problem to an audience<br>of non-specialists | Provides background research into the<br>topic and describes the problem to be<br>solved                                                                                                                                  | Provides background research<br>into the topic but does not<br>describe the problem to be<br>solved; insufficient or<br>nonexistent explanation of<br>details to non-specialists |       | x 3               |                |
| uc         | Integration of<br>Knowledge | Discusses at least four topics covered<br>during the course. Demonstrates full<br>understanding and application of concepts<br>learned in course. Chemical detail of<br>structures and discussion is accurate.                             | Discusses three topics covered during<br>the course. Demonstrates satisfactory<br>understanding and application of<br>concepts learned in course. Chemical<br>detail of structures and discussion are<br>mostly accurate. | The paper does not demonstrate<br>that the author has fully<br>understood and applied concepts<br>learned in the course.                                                         |       | x 4               |                |
| Discussion | Depth                       | Paper presents a complete story of the<br>discovery of the selected drug, including<br>medical need, biological target or assay,<br>medicinal chemistry optimization, and<br>development.                                                  | Paper presents a partial story of the discovery of the selected drug.                                                                                                                                                     | Incomplete coverage of discovery.                                                                                                                                                |       | x 4               |                |
| Ď          | Cohesiveness                | Addresses the topic with clarity; organizes<br>and synthesizes information; and draws<br>conclusions                                                                                                                                       | Addresses the topic; lacks substantive<br>conclusions; sometimes digresses<br>from topic of focus                                                                                                                         | Presents little to no clarity in<br>formulating conclusions and/or<br>organization                                                                                               |       | x 4               |                |
|            | Summary                     | Presents a summary of the topic with clear<br>recommendations and/or implications for<br>future research                                                                                                                                   | Presents a summary of the topic                                                                                                                                                                                           | Missing or does not summarize the topic                                                                                                                                          |       | x 3               |                |
|            | fechanics and ocumentation  | Is free or almost free of errors of grammar,<br>spelling, and writing mechanics;<br>appropriately documents sources (ACS<br>style)                                                                                                         | Has errors but they don't represent a major distraction; documents sources                                                                                                                                                | Has errors that obscure meaning<br>of content or add confusion;<br>neglects important sources or<br>documents few to no resources                                                |       | x 2               |                |
|            | Comments                    |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                           |                                                                                                                                                                                  |       | d Score<br>x 100) |                |

## CHEM 5630: Introduction to Chemical Biology and Biotechnology Oral Presentation Scoring Sheet

Presenter: Discussion leader: Content Notes: • Presentation is organized • Material is covered with adequate depth • Subject is appropriate and relevant • Uses examples to clarify and add interest • Demonstrates use of multiple sources Score out of 25. (25 = excellent, 20 = very good, 15 = good, 10 = fair, 5 = poor)Delivery • Audible • Understandable • Prepared • Attitude, confidence, and Notes: enthusiasm • Effective use of time Score out of 10. (10 = excellent, 8 = very good, 6 = good, 4 = fair, 2 = poor)

Questions

Notes:

Score out of 5. (5 = excellent, 4 = very good, 3 = good, 2 = fair, 1 = poor)

\_\_\_\_ Deductions (late assignment, etc.)

\_\_\_\_ Total score out of 40

|                                                                                                                                                                                                                             | 1 (Poor)                                                                | 2 (Fair)                                                                   | 3 (Good)                                                      | 4 (Excellent)                                                                        | Score |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------|-------|
| Demonstrate advanced level knowledge in<br>both (i) synthesis and materials chemistry and<br>(ii) analytical and physical chemistry methods,<br>with a higher level of knowledge expected in<br>the student's area of focus | Student lacks basic<br>knowledge in<br>chemistry and biology<br>topics. | Student displays<br>knowledge, but is<br>weak in several key<br>concepts.  | Student displays<br>knowledge, with minor<br>weaknesses.      | Student displays great<br>knowledge chemistry<br>and biology topics.                 |       |
| Apply learned chemical biology practices and theories to proposed problems                                                                                                                                                  | Student unable to<br>solve basic chemistry<br>biology problems.         | Student displays<br>knowledge, but is<br>weak in several key<br>concepts.  | Student displays<br>knowledge, with minor<br>weaknesses.      | Student able to apply<br>knowledge to solve<br>proposed chemical<br>biology problem. |       |
| Communicate chemical biology topics<br>effectively                                                                                                                                                                          | Student unable to<br>clearly communicate<br>chemical topics.            | Student can<br>sometimes<br>communicate<br>chemical topics<br>effectively. | Student can<br>effectively<br>communicate<br>chemical topics. | Student can<br>communicate<br>chemical topics<br>effectively and<br>compellingly.    |       |

Comments: